Inflationary theory takes advantage of results from modern particle physics, which predicts that at very high energies there should exist peculiar kinds of substances which actually turn gravity on its head and produce repulsive gravitational forces. The inflationary explanation is the idea that the early universe contains at least a patch of this peculiar substance. It turns out that all you need is a patch; it can actually be more than a billion times smaller than a proton. But once such a patch exists, its own gravitational repulsion causes it to grow, rapidly becoming large enough to encompass the entire observed universe.
…
The inflationary theory gives a simple explanation for the uniformity of the observed universe, because in the inflationary model the universe starts out incredibly tiny. There was plenty of time for such a tiny region to reach a uniform temperature and uniform density … For the tiny universe with which the inflationary model begins, there is enough time in the early history of the universe for these mechanisms to work, causing the universe to become almost perfectly uniform. Then inflation takes over and magnifies this tiny region to become large enough to encompass the entire universe, maintaining this uniformity as the expansion takes place.
The “classical” world that we perceive, in which every object has a definite position and moves in a deterministic way, is really just the average of the different possibilities that the full quantum theory would predict. If you apply that notion here, it is at least qualitatively clear from the beginning that it gets us in the direction that we want to go. It means that the uniform density, which our classical equations were predicting, would really be just the average of the quantum mechanical densities, which would have a range of values which could differ from one place to another. The quantum mechanical uncertainly would make the density of the early universe a little bit higher in some places, and in other places it would be a little bit lower. So, at the end of inflation, we expect to have ripples on top of an almost uniform density of matter. It’s possible to actually calculate these ripples.
… we still don’t know what most of the universe is made out of.
The stuff we do know about — protons, neutrons, ordinary atoms and molecules — appear to comprise only about 5% of the mass of the universe.
– Alan Guth from here
Leave a Reply